Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 15, 2025
-
Successfully tackling many urgent challenges in socio-economically critical domains, such as public health and sustainability, requires a deeper understanding of causal relationships and interactions among a diverse spectrum of spatio-temporally distributed entities. In these applications, the ability to leverage spatio-temporal data to obtain causally based situational awareness and to develop informed forecasts to provide resilience at different scales is critical. While the promise of a causally grounded approach to these challenges is apparent, the core data technologies needed to achieve these are in the early stages and lack a framework to help realize their potential. In this article, we argue that there is an urgent need for a novel paradigm of spatio-causal research built on computational advances in spatio-temporal data and model integration, causal learning and discovery, large scale data- and model-driven simulations, emulations, and forecasting, as well as spatio-temporal data-driven and model-centric operational recommendations, and effective causally driven visualization and explanation. We thus provide a vision, and a road map, for spatio-causal situation awareness, forecasting, and planning.more » « less
-
Data- and model-driven computer simulations are increasingly critical in many application domains. Yet, several critical data challenges remain in obtaining and leveraging simulations in decision making. Simulations may track 100s of parameters, spanning multiple layers and spatial-temporal frames, affected by complex inter-dependent dynamic processes. Moreover, due to the large numbers of unknowns, decision makers usually need to generate ensembles of stochastic realizations, requiring 10s-1000s of individual simulation instances. The situation on the ground evolves unpredictably, requiring continuously adaptive simulation ensembles. We introduce the DataStorm framework for simulation ensemble management, and demonstrate its DataStorm-FE data- and decision-flow and coordination engine for creating and maintaining coupled, multi-model simulation ensembles. DataStorm-FE enables end-to-end ensemble planning and optimization, including parameter-space sampling, output aggregation and alignment, and state and provenance data management, to improve the overall simulation process. It also aims to work efficiently, producing results while working within a limited simulation budget, and incorporates a multivariate, spatiotemporal data browser to empower decision-making based on these improved results.more » « less
An official website of the United States government
